Roll No.

QUESTION PAPER CODE: X10662

B.E./B.Tech. DEGREE EXAMINATIONS, NOV/DEC 2020 & APRIL/MAY 2021

Fourth Semester

Computer Science and Engineering

MA8402 – PROBABILITY AND QUEUEING THEORY

(Regulations 2017)

Answer ALL Questions

Time: 3 Hours

PART-A

Maximum Marks:100 $(10 \times 2 = 20 \text{ Marks})$

- 1. Let A and B be two events such that $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{1}{6}$. Compute P(B|A) and $P(\bar{A} \cap B)$.
- 2. The p.d.f. of a random variable X is $f(x) = \frac{1}{2}e^{-|x|}, -\infty < x < \infty$. Find E(X).
- 3. The joint p.d.f. of the random variable (X, Y) is given as

$$f(x,y) = \begin{cases} \frac{1}{2}xe^{-y}, & y > 0, \ 0 < x < 2\\ 0, & \text{otherwise} \end{cases}$$

Calculate the marginal p.d.f. of X.

- 4. Show that the correlation coefficient , ρ_{XY} , of the random variables X and Y lies between -1 and 1.
- 5. Define (i) Markov Chain and (ii) Wide-sense stationary process.
- 6. Let $\{X_n; n \ge 0\}$ be a Markov chain having state space $S = \{1, 2\}$ and one-step TPM $P = \begin{bmatrix} 0 & 1 \\ \\ 1/2 & 1/2 \end{bmatrix}$. Find the stationary probabilities of the Markov chain.
- 7. In an $M/M/1/\infty/FCFS$ queueing system, the arrival rate $\lambda = 3$ customers/minute and utilization ratio $\rho = 0.5$. Obtain L_s and W_s .
- 8. In an M/M/c/N/FCFS queueing system, write the expressions for P_0 and P_N .
- 9. An M/D/1 queue has an arrival rate of 10 customers per second and a service rate of 15 customers per second. Calculate the mean number of customers in the system.
- 10. Consider a two-system random Markovian queueing network with customer arrival rate $\lambda = 2/minute$ and service rate $\mu_1 = 4/minute$ at station 1 and service rate $\mu_2 = 5/minute$ at station 2. Compute the probability that both the servers are idle.

PART-B

- (i) Of three types of spark plugs, 6% of Type A spark plugs are defective, 4% of Type B spark plugs are defective, and 2% of Type C spark plugs are defective. A spark plug is selected at random from a batch of spark plugs containing 50 Type A plugs, 30 Type B plugs, and 20 Type C plugs. The selected plug is found to be defective. What is the probability that the selected plug was of Type A? (8)
 - (ii) Let $P(X = x) = \left(\frac{3}{4}\right) \left(\frac{1}{4}\right)^{x-1}$, $x = 1, 2, 3, \dots$, be the probability mass function of a random variable X. Obtain (A) P(X > 5), (B) the moment generating function, $M_X(t)$, of the random variable X and (C) E(X) and Var(X). (8)

(OR)

(b) (i) The p.d.f. of a continuous random variable X is given as

$$f(x) = \begin{cases} \frac{1}{6}, & -3 \le x \le 3\\ 0, & \text{otherwise} \end{cases}$$

Find (A) P(-2 < X < 0), (B) Cumulative distribution function, F(x) and (C) E(X) and Var(X). (8)

- (ii) Let X be an exponential random variable with $E(X^2) = 1/2$. Obtain (A) E(X) and Var(X), (B) Moment generating function, $M_X(t)$ and (C) P(X > 3/X > 1). (8)
- 12. (a) (i) The joint p.d.f. of the random variable (X, Y) is given as

$$f(x,y) \begin{cases} ke^{-(x+y)}, & 0 \le y \le x \le \infty \\ 0, & \text{otherwise} \end{cases}$$

Find (A) the value of k, (B) the marginal p.d.f.s of the random variables X and Y, (C) the conditional p.d.f. f(x/y) of X given Y = y. (8)

(ii) The joint p.m.f. of discrete random variable (X, Y) is given as P(X = -1, Y = 0) = 1/8, P(X = -1, Y = 1) = 2/8, P(X = 1, Y = 0) = 3/8 and P(X = 1, Y = 1) = 2/8. Compute the correlation coefficient, ρ_{XY} of X and Y. (8)

(OR)

(b) (i) Two random variables X and Y have joint p.d.f.

$$f(x,y) \begin{cases} \frac{5}{16}x^2y, & 0 < y < x < 2\\ 0, & \text{otherwise} \end{cases}$$

(A) Find the marginal p.d.f.s of the random variables X and Y, (B) Obtain the conditional p.d.f. f(x/y), of X given Y = y, (C) Are the random variables X and Y independent? Justify. (8)

(ii) The joint p.d.f. of the random variable (X, Y) is given as

$$f(x,y) \begin{cases} e^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{otherwise} \end{cases}$$

Find the p.d.f. of random variables U = X + Y and $V = \frac{U}{V}$. (8)

- 13. (a) (i) Consider a random process $\{X(t); -\infty < t < \infty\}$ defined by $X(t) = U \cos t + V \sin t$, where U and V are independent random variables, each of which assumes the values -2 and 1 with probabilities 1/3 and 2/3, respectively. Show that $\{X(t); -\infty < t < \infty\}$ is wide-sense stationary. (8)
 - (ii) Let $\{X_n : n \ge 0\}$ be a Markov chain having state space $S = \{1, 2, 3\}$ and one-step TPM

$$P = \begin{bmatrix} \frac{5}{4} & \frac{1}{4} & 0\\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4}\\ 0 & \frac{3}{4} & \frac{1}{4} \end{bmatrix}$$

(A) Draw a transition diagram between for this chain, (B) Is the chain irreducible. Justify your answer, and (C) Is the state-3 ergodic? Explain. (8)

(OR)

- (b) (i) State the postulates of the Poisson process and obtain the probability distribution for that. Is the Poisson process stationary? Justify your answer.(8)
 - (ii) Let $\{X_n; n = 0, 1, 2, 3...\}$ be a Markov chain having state space $S = \{1, 2, 3\}$ with one-step transition probability matrix

$$P = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & 0 & 1 \end{bmatrix}$$

(8)

and initial distribution $P(X_0 = i) = \frac{1}{3}$, 1 = 1, 2, 3. Compute (A) $P(X_3 = 1, X_2 = 1, X_1 = 1, X_0 = 2)$ and (B) $P(X_2 = 1, X_1 = 1/X_0 = 1)$.

(a) (i) In an M/M/1/∞/FCFS queueing system, if λ = 10 and μ = 15, compute (A) L_q,
(B) W_s, (C) P₃ and(D) probability that an arriving customer has to wait in the queue.

(ii) For an $M/M/1/\infty$ balking queue derive the steady-state probabilities of the system size by assuming that the service rate as $\mu_n = \mu$, n = 1, 2, 3, ..., and the arrival rate of the customers as $\lambda_n = \frac{\lambda}{n+1}$, n = 0, 1, 2, ..., where $n \ge 0$ is the number of customers in the system. (8)

(OR)

- (b) (i) A car servicing station has 2 bays where service can be offered simultaneously. Because of space limitation, only 4 cars can wait in the queue. The arrival pattern is Poisson with 12 cars per day. The service time in both the bays is exponentially distributed with $\mu = 8$ cars per day per bay. Find the average number of cars in the service station, the average number of cars waiting for service and the average time a car spends in the system. (8)
 - (ii) For an $M/M/2/\infty$ FCFS queueing system, derive the system of differential-difference equations for the system size probabilities. Under steady-state condition, obtain the steady-state probabilities of the system size and the mean number of customers in the system. (8)
- 15. (a) Discuss an $M/G/1/\infty$ FCFS queueing system and derive the P-K mean value formula for the system size. Deduce also the mean number of customers in the system for an $M/M/1/\infty$ FCFS queueing model from the P-K mean value formula. (16)

(OR)

(b) Derive the system of differential-difference equations for the joint probabilities of the system size of two-stations tandem queueing system. Under the steady-state conditions, determine the steady-state probabilities of the system size and hence obtain the expected number of customers in the system and the mean waiting time of a customer in the system. (16)

* * * * * * *